Biosynthesis of the Antimitotic Antitumour Antibiotic Rhizoxin by *Rhizopus chinensis*; Origins of the Carbon Atoms[†]

Hisayoshi Kobayashi, Shigeo lwasaki,* Emiko Yamada, and Shigenobu Okuda

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

¹³C N.m.r. spectroscopy has been used to determine the labelling patterns of the antibiotic rhizoxin derived from ¹³C labelled acetate, methionine, serine, and glycine which are all incorporated during biosynthesis by the fungus, *Rhizopus chinensis*.

We have recently reported the structures of rhizoxin,¹ a novel 16-membered macrolide, and of its homologues² obtained from *Rhizopus chinensis* Saito Rh-2 strain. They show activity against fungi, plants, and tumour cells, appearing to interfere with cell division.³ We now report results of a study of the biosynthesis of rhizoxin.

Preliminary studies with ¹⁴C-labelled precursors indicated that acetate, methionine, and serine were incorporated during the biosynthesis of the antibiotic while propionate was not. Thus we fed ¹³C enriched acetate (both [1-¹³C]acetate and [1,2-¹³C₂]acetate), [methyl-¹³C]methionine, [1-¹³C]serine, and [1,2-¹³C₂]glycine to *R. chinensis* grown in a medium as previously described;¹ the antibiotic was purified by silica gel column chromatography and h.p.l.c. as reported previously.¹ Subsequent analysis of ¹³C n.m.r. spectra allowed the position of incorporation of the various precursors to be assigned as shown in Figure 1.

The proton noise decoupled ${}^{13}Cn.m.r.$ spectrum of rhizoxin (see Table 1), obtained after feeding with $[1,2{}^{-13}C_2]$ acetate, indicated the incorporation of thirteen intact acetate units (0.8% enrichment). Twelve of these formed a polyketide chain from C-1 to C-22 with branching of C-5a to C-5b, and the remainder an intact unit forming the C-26, C-26a portion on the methyl substituted oxazole ring. Addition of [*methyl-*]

Table 1. ¹³C N.m.r. data^a for the incorporation of $[1,2^{-13}C_2]$ acetate, [*methyl*-¹³C] methionine, $[1^{-13}C]$ serine, and $[1,2^{-13}C_2]$ glycine into rhizoxin.

Carbon	δ	$J_{\rm CC}/{\rm Hz^b}$	Carbon	δ	$J_{\rm CC}/{\rm Hz}$
1 2	169.3 55.3	77.0	15 16	77.6 39.2}	37.4
3 4	57.4 36.6	44.0	16a 17	10.0 90.5լ	44.8
5	30.4 35.2	32.3	18 18a	137.0∫ 12.1	0
5a 5b	37.2 172.5	50.6	19 20	130.6 124.9	57.2
7 8	$\{ 84.3 \\ 46.5 \}$	38.2	21 22	138.5 138.3	с
8a 9	17.4 140.2	71.2	22a 23	14.8 121.0	70.4ª
10 11 12	127.8∫ 63.6∖ 65.7∫	30.1	24 25 26	139.1∫ 137.4 162.4)	
12 12a 13	11.9 78.4)		26a 17-OCH₃	13.5 56.5	60.9
13	34.2	38.9	., 00113	2010	

^a Data were recorded on a Jeol JNM FX-400 n.m.r. spectrometer at 100.7 MHz. Chemical shifts in $CDCl_3$ are given in p.p.m. relative to Me_4Si . ^b Unless otherwise stated, coupling constants for [1,2- $^{13}C_2$]acetate incorporation are given. ^c Coupling constant could not be determined because of overlapping of the signals due to C-19 and -20. ^d Coupling constant for [1,2- $^{13}C_2$]glycine incorporation.

⁺ For Part IX of the series Studies on Macrocyclic Lactone Antibiotics see reference 2.

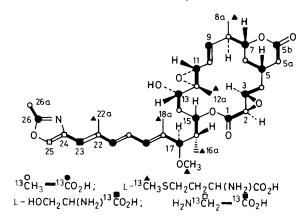


Figure 1. Schematic representation of biosynthetic incorporation into rhizoxin.

¹³C]methionine to the medium caused enhancement of the intensity of six signals in the ¹³C n.m.r. spectrum attributed to C-8a, C-12a, C-16a, C-18a, C-22a, and the methoxy methyl carbon (by *ca.* 36%). Thus all methyl groups apart from C-26a are derived from methionine.

Feeding with $[1^{-13}C]$ serine caused intensity enhancement of the C-23 signal in the ${}^{13}C$ n.m.r. spectrum of rhizoxin (*ca.* 1% enrichment). Similar experiment with $[1,2^{-13}C_2]$ glycine caused intensity enhancement of three signals due to C-23, C-24, and C-25 (*ca.* 2% enrichment). In this spectrum, C-C coupling between C-23 and C-24 was observed (J_{CC} 70.4 Hz) while coupling was not observed between C-24 and C-25. This indicates that a C₁ unit from a glycine molecule coupled with

In conclusion, we have been able to demonstrate by ${}^{13}C$ n.m.r. spectroscopy the origin of all the carbon atoms in rhizoxin. Presumably, *O*-acetyl-L-serine acts as the starter unit of the polyketide chain C-22 to C-1, prior to or after formation of a 2-methyloxazole-4-carboxylic acid unit, the polyketide chain then being alkylated with six moles of methionine at C-8, C-12, C-16, C-18, C-22, and a hydroxy group (at C-17), and with an acetate unit at C-5.

Since compounds without methoxymethyl and epoxy groups were also isolated,² *O*-methylation and epoxidation presumably occur after formation of the macrocyclic ring.

Financial support of this research by the Hoansha Foundation is gratefully acknowledged.

Received, 28th July 1986; Com. 1068

References

- S. Iwasaki, H. Kobayashi, J. Furukawa, S. Okuda, Z. Sato, I. Matsuda, and T. Noda, J. Antibiotics, 1984, 37, 354; S. Iwasaki, M. Namikoshi, H. Kobayashi, J. Furukawa, S. Okuda, A. Itai, A. Kasuya, Y. Iitaka, and Z. Sato, *ibid.*, 1986, 39, 424.
- 2 S. Iwasaki, M. Namikoshi, H. Kobayashi, J. Furukawa, and S. Okuda, Chem. Pharm. Bull., 1986, 34, 1387.
- 3 T. Tsuruo, T. Oh-hara, H. Iida, S. Tsukagoshi, Z. Sato, I. Matsuda, S. Iwasaki, S. Okuda, F. Shimizu, K. Sasagawa, M. Fukami, K. Fukuda, and M. Arakawa, *Cancer Res.*, 1986, 46, 381.